Chapter 2 Fault Modelling

Arnaud Virazel

<u>virazel@lirmm.fr</u>

Introduction

- Defect characterisation
- Defect modelling
 - Stuck-at
 - Bridging
 - Delay
- Fault equivalence
- Example/Exercise

How to get a test sequence?

- Use a **functional sequence** produced to verify the DUT by simulation during the design phase
 - easy to find
 - more difficult to validate
 - even more difficult to improve

How to get a test sequence?

Apply an exhaustive sequence

- Much too long
- Example
 - A 64 inputs circuit
 - $2^{64} = 18^{18}$ vectors
 - ATE frequency: 1 GHz
 - Test application time: about 585 years

\Rightarrow Structural Test – Use of fault model

How to get a test sequence?

Structural Test

- Fault models
 - Coverage rate → "defect level"
- EDA tools
 - Fault simulator
 - ATPG Automatic Test Pattern Generator

Some Defect Examples

Introduction

- Defect characterisation
- Defect modelling
 - Stuck-at
 - Bridging
 - Delay
- Fault equivalence
- Example/Exercise

Failure Mechanisms

- Wafer defects
- Human interactions with the manufacturing process
- Equipment failure
- Impact of the environment
- Technological process variations

Monitoring of Global Defects

- PCM "Process Control Monitor"
 - Composed of basic structures (transistors, metal lines, via chains, ...)
 - Distributed on the wafer (placed on the cutting lines)

- Ring oscillator
 - Monitoring of high-level parameters
 - Oscillation frequency v.s. low level parameters of the technological process

Monitoring of Local Defects

- Online monitoring at different stages of the manufacturing process
- Gate oxide monitors
- Interconnect monitors

Introduction

Defect characterisation

Defect modelling

- Stuck-at
- Bridging
- Delay
- Fault equivalence
- Example/Exercise

Stuck-at Fault Principle

One and only one (single fault assumption) line of the DUT is stuck-at logic `0' or logic `1'

Stuck-at Fault Features

- It allows to represent many different physical defects
- It is technology independent
- It allows the usage of the Boolean algebra to find the test vectors
- Test vectors targeting SaF also detect other defects
- The set of faults obtained is limited
- The Test Coverage (TC) is an accepted metric between suppliers and customers

 $TC = \frac{Nbre \ de \ fautes \ détectées}{Nbre \ de \ fautes \ total}$

The SaF model can be used to model other types of faults

Bridging Fault Principle

SaF Model Issues

- Gate level modelling
 - Multiplexer structure \rightarrow LUT

Inadequacy Of Sticket Fait Models

Problem due to gate level structural modelling

Incharge of Sucket Fault Mades Saf Model SSUES Madification of the logical functions

Modification of the logic function

а	b	С	d	0	Detected SaF	O (with defect)
0	1	0	1	1	Sa1(a) Sa1(c)	1
1	0	1	0	1	Sa1(b) Sa1(d)	1
1	1	0	Х	0	Sa0(a) Sa0(b)	0
0	Х	1	1	0	Sa0(c) Sa0(d)	0

SaF Memory Effect

Memory effect

	а	b	0	O (with the fault)
V1	0	0	1	1
V2	0	1	1	1
V3	1	0	1	1
V4	1	1	0	?

SaF Model Issues

Unknown value

Erroneous logic value

- Possibly detected by a classical logic test
- Augmentation du courant consommé ("IDDQ testing »
 - Idd quiescent)

Correct logic value

- No logic error undetectable by a static test
- Higher power consumption ("IDDQ testing")
- Higher propagation delay Delay Fault

- Introduction
- Defect characterisation
- Defect modelling
 - Stuck-at
 - Bridging
 - Delay

Fault equivalence

Example/Exercise

Definition - Equivalence

- T(f_i) is the set of tests that detect the fault f_i
- Two faults f_i et f_j are **equivalents** if and only of $T(f_i) \equiv T(f_j)$
- All test detecting f_i also detects f_j (reciprocally)

Definition - Implication

- A fault f_i **dominate** the fault f_k if and only if $T(f_k) C T(f_i)$
- All test detecting f_k also detects f_i
- The test of f_k imply the of f_i

Generalisation

IN/OUT			Detected SaF (#)							
A	В	С	Sa0(A)	Sa0(B)	Sa1(A)	Sa1(B)	Sa0(S)	Sa1(S)		
0	0	1			#	#	#			
0	1	0		#				#		
1	0	0	#					#		
1	1	0						#		

- For a gate with a priority value c and an inversion i, all stuck-at fault at c of an input is equivalent to the stuck-at c⊕i (equivalence) of the output
- For a gate with a priority value c and an inversion i, all test detecting stuck at fault at c̄ of an input implies the test of stuckat c⊕i (implication) of the output

- Introduction
- Defect characterisation
- Defect modelling
 - Stuck-at
 - Bridging
 - Delay
- Fault equivalence
- Example/Exercise

Test Generation Steps

Fault sensitization

 Apply the logic value to sensitize the fault ⇒ 0(1) for a Sa1(0)

Fault effect propagation

 Open a non-masking (non priority values on side inputs) propagation path form the fault site to at least one primary output (an observable point) of the DUT

Justification

 Justify all logic values fixed during sensitization and propagation steps to primary inputs of the DUT